top of page
검색
작성자 사진RAMO

[NeurlPS workshop 2022] Differentially Private CutMix for Split Learning with Vision Transformer

Authors: Seungeun Oh, Jihong Park, Sihun Baek, Hyelin Nam, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim


This work is to be presented at NeurIPS 2022 INTERPOLATE Wksp.

Recently, vision transformer (ViT) has started to outpace the conventional CNN in computer vision tasks. Considering privacy-preserving distributed learning with ViT, federated learning (FL) communicates models, which becomes ill-suited due to ViT’s large model size and computing costs. Split learning (SL) detours this by communicating smashed data at a cut-layer, yet suffers from data privacy leakage and large communication costs caused by high similarity between ViT’s smashed data and input data.


Motivated by this problem, we propose DP-CutMixSL, a differentially private (DP) SL framework by developing DP patch-level randomized CutMix (DP-CutMix), a novel privacy-preserving inter-client interpolation scheme that replaces randomly selected patches in smashed data. By experiment, we show that DP-CutMixSL not only boosts privacy guarantees and communication efficiency, but also achieves higher accuracy than its Vanilla SL counterpart. Theoretically, we analyze that DP-CutMix amplifies Rényi DP (RDP), which is upper-bounded by its Vanilla Mix-up counterpart.

댓글 0개

최근 게시물

전체 보기

[RAMO] 2024년도 한-EU 6G 과제 최종 선정

RAMO 연구실이 2024년도 한-EU 6G 과제에 최종 선정되었다. 본 과제는 연세대학교가 주관으로 연구하며 국내 및 유럽 기관들과 공동으로 연구에 진행한다. 국내에서는 서울대학교, 고려대학교, 한국전자통신연구원(ETRI), 엘지전자(주)가...

Comments


bottom of page